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Motivation for change detection

A cyber attack typically changes the behaviour of the target network.

For example, by exploiting a Windows vulnerability the 2017 WannaCry ransomware attack led
to spikes of activity on port 445.

0 100 200 300

0
10
0

20
0

30
0

40
0

Day

Tr
affi

c
vo
lu
m
e1

in
m
ill
io
ns

12
M
ay

20
17 Port 445

Port 443
Port 80

1recorded by a network router at Imperial College London
Karl Hallgren (klh16@ic.ac.uk) Robust Bayesian change detection 2 / 22



Motivation for change detection

To detect the presence of a network intrusion, it can be informative to monitor for changes in
the high-volume data sources which are collected inside an enterprise computer network

• NetFlow - summaries of connection between devices
• Authentication events
• Host event logs

Large data set derived from the operational network environment at LANL

• Unified Host and Network Data Set (Turcotte et al., 2017)
https://csr.lanl.gov/data/2017.html
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Bayesian changepoint analysis

An unknown number k of changepoints, whose positions are denoted by τ1:k = (τ1, . . . , τk),
split the data x1, . . . , xT into k + 1 segments such that within each segment j

xt
iid∼ f ( · | θj ) ∀t ∈ {τj−1, . . . , τj − 1}

for some segment parameter θj .

A priori each time point is assumed to be a changepoint with probability p so that

π(k , τ1:k) = pk(1− p)T−1−k ∝ {p/(1− p)}k

x t

1 τ1 τ2 T
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Difficulties applying traditional change detection methods
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Difficulties applying traditional change detection methods

Most traditional changepoint detection methods will fail to characterise what cyber-security
analysts mean by a change and consequently fit many more changepoints than preferable.

1. Classical changepoint models are not robust to seasonal variations, gradual drifts and
other normal dynamic phenomena one may observe in cyber data.

2. Suspicious changes in the behaviour of a computer within a network can be observed
under non-attack conditions.
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Robust Bayesian change detection for cyber-security applications

Therefore it is relevant to develop methods to reduce false positive detections in changepoint
analysis for cyber-security applications.

1. Building changepoint models which are robust to normal dynamic phenomena one may
observe in cyber data, yet still tractable.

2. Combining evidence from multiple sources to identify patterns of changes which are a
priori likely to correspond to the kill chain of an attack (Hutchins et al., 2011; Sexton
et al., 2015).
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Part 1. Building robust segment models



Relaxing the assumption of exchangeability

For each segment, assuming the data are iid conditional on some segment-specific parameter is
equivalent to assuming that the data are infinitely exchangeable by De Finetti’s representation
theorem (Bernardo and Smith, 1993).

A potentially infinite sequence x1, x2, . . . is said to be infinitely exchangeable under a
probability measure F if, for every n and any set of indices In = {i1, . . . , in}, we have

F (xi1 , . . . , xin) = F (xσ(i1), . . . , xσ(in)),

for any permutation σ on In.

−→ This assumption of complete symmetry within segments is too restrictive for cyber-
security applications.
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Segment models for non-exchangeable data

It is of interest to build segment models which may admit exchangeability but also other weak
forms of dependence, so that the corresponding changepoint models are more flexible (yet still
tractable).
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Moving-sum changepoint model

Within a generic segment, suppose the observed data x1, . . . , xn satisfy

xt =
m∑
i=0

yt−i ,

where (yt) are latent random variables such that

yt
iid∼ f ( · | θ,m)

for some unknown segment-specific parameters θ ∈ Θ and m > 0.

This approach allows m-dependence within segments, whilst maintaining a desired marginal
distribution in the class of convolution-closed infinitely divisible distributions.

• E.g., if yt
iid∼ Poisson(θ/(m + 1)) then xt ∼ Poisson(θ) with m-dependence.
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Simulations from the moving-sum changepoint model
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Simulations from the moving-sum changepoint model
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Simulations from the moving-sum changepoint model
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Simulations from the moving-sum changepoint model
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Simulations from the moving-sum changepoint model

16
20

0
16

60
0

17
00

0

x t

1 τ1 τ2 τ3 T

Karl Hallgren (klh16@ic.ac.uk) Robust Bayesian change detection 14 / 22



Simulations from the moving-sum changepoint model
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Part 2. Towards kill chain detection



Inadequate prior distribution for the changepoints

The aim is to perform changepoint analysis on L time series of length T , denoted by y = (y`,t).

Let s = (s`,t) be a matrix indicating the positions of the changepoints,

s`,t =

{
1 if t is a changepoint for the `-th time series
0 otherwise.

A priori assumed that

π(s) =
∏
`,t

{
ps`,t (1− p)1−s`,t

}
∝
∏
`,t

{
p

1− p

}s`,t

One issue is that π(s) = π(s ′), where

s =

 0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 1 0 0 0 0

 s ′ =

 0 0 0 0 1 0 1 0
0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0


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Encoding prior knowledge on cyber-attack propagation

Cyber-analysts can specify prior knowledge on cyber-attack propagation by defining the
neighbourhoods of the indices ` and t, denoted by ∂(`) and ∂(t), respectively.

For example, if `, `1, `2, . . . , `L denote the indices of time-series representing the process
activity of computers which are known to be peers on the network, we may have

{`1, . . . , `L} ⊂ ∂(`) and ∂(t) = {t − 1, t, t + 1}.

To encode the structure in the neighbourhood of (`, t), define

w`,t ≡ w`,t(s) =

1 +
∑

`′∈∂(`)

1{1 ∈ s`′,∂(t)}

/ (1 + |∂(`)|)

For example,

w`,t = 1/3 if s =

 0 1 0 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 0 0 1 0


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Informative prior distribution for the changepoints

Consider a prior distribution for s which takes into account a priori knowledge on cyber-attack
propagation,

π(s) ∝
∏
`,t

{(
p

1− p

)
φλ(w`,t)

}s`,t

for some non-decreasing function φλ : (0, 1] −→ (0, 1] such that φλ(1) = 1.

Now,

π(s)/π(s ′) =
φ3
λ(1)

φ2
λ(2/3)φλ(1/3)

> 0,

with

s =

 0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 1 0 0 0 0

 s ′ =

 0 0 1 0 0 0 1 0
0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0


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Flexible informative prior distribution for the changepoints

Possible choices for the link function φλ include:

φλ(w) = wλ φλ(w) =
1 + exp(−λ)

1 + exp(−λ[2w − 1])

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

w

φ
λ

(w
)

λ = 0.03

λ = 0.3

λ = 1

λ = 4

λ = 50

0.0 0.2 0.4 0.6 0.8 1.0

w

λ = 0.03

λ = 1

λ = 4

λ = 20

Karl Hallgren (klh16@ic.ac.uk) Robust Bayesian change detection 19 / 22



Inference via MCMC

Let s be binary matrix with s`,t = 0, and let s ′ be identical to s but with s`,t = 1.

Gibbs sampling is possible since the full conditional distribution of s`,t is available,

s`,t ∼ Bernoulli
(
Q

1 +Q

)
,

where

Q =
f (y | s ′ )
f (y | s )

π(s ′)
π(s)

,

but poor mixing and convergence issues are to be expected since the parameters will typically
be highly correlated.
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Conclusion
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Alternative representation of the moving-sum segment model

Recall xt =
∑m

i=0 yt−i for all t. Equivalently,

yt = yt−(m+1) + xt − xt−1, for t = 2, . . . , n, (1)

and y1 = x1 − (y−m+1 + · · ·+ y0).

The first m latent variables γ1:m = (γ1, . . . , γm), with

γr = y−m+r , for r = 1, . . . ,m,

may be seen as the unknown initial conditions of a stochastic difference equation defined by (1).

Conditional on the γ1:m, there is a one-to-one deterministic transformation, denoted by Υ,
between x1:n and y1:n with unit Jacobian,

y1:n = Υ(x1:n | γ1:m),

which can be obtained explicitely by iterating (1).
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Conditional likelihood of the observed data

As a result, for each segment resulting from the changepoints, the conditional likelihood of the
data

f ( x1:n | θ,m, γ1:m) = f ( y1:n | θ,m, γ1:m)× 1.

is tractable, and therefore if we treat (θ,m, γ1:m) as unknown segment-specific parameters with
prior density

π(θ)π(m)
m∏
r=1

f (γr | θ,m),

then an expression for the joint posterior distribution of the changepoints and the segment
parameters is immediately available via Bayes’ theorem.
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The segment parameter space

Let Ym ≡ Ym(x1:n) denote the set of sequences γ1:m such that yt belongs to the support of
f (y |m, θ), for all t = 1, . . . , n.

Ym depends on the observed data when the support of f (y |m, θ) is bounded.
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The structure of the constrained parameter space can be exploited to design a
sampling strategy.
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